- जन्म – 300 ईसा . पूर्व
- जन्म स्थान – अलेकजेंड्रिया
- निधन – अज्ञात
यूक्लिड को ज्यामिति का जनक माना जाता है. इन्होने ईसा से तीसरी शताब्दी पूर्व ज्यामिति की समस्त जानकारी को लिपिबढ़ कर दिया था. ज्यामिति के जन्मदाता कहे जाने वाले यूक्लिड (Euclid biography in Hindi) उन महान विचारको मे एक है. जिन्हे काल की कोई सीमा परवाहीत नहीं कर सकती.
यूक्लिड का जन्म – Euclid biography in Hindi
यूक्लिड का जन्म ईसा से लगभग 300 वर्ष पहले यूनान मे हुआ था. उन्होंने ज्यामिति सम्बंधित पहले की सभी सामग्रीयों को संकलित कर 13 खंडो मे प्रस्तुत किया. जिन्हे आज यूक्लिड का मूल तत्व कहा जाता है. ऐसा माना जाता है की यूक्लिड की इन पुस्तकों से ज्यादा एकमात्र बाईबिल ग्रन्थ की प्रतिया ज्यादा बिकी है. इस बात से यह अनुमान लगाया जा सकता है की यूक्लिड कितने महान गणितज्ञ थे.
आज 2300 वर्ष से ज्यादा समय बीत जाने पर भी आरम्भी कक्षाऔ मे जो रेखा गणित पढ़ाई जाती है वह यूक्लिड की ग्रंथो पर ही आधारित है.
वास्तव मे ज्यामिति और यूक्लिड एक दूसरे के पूरक बन गए है. यूक्लिड का ग्रन्थ अपने आप मे और पूरे विश्व मे अत्यंत महत्वपूर्ण रहा है. फिर भी इस महान गणितज्ञ के जीवन के बारेे मे सिर्फ इतना भर कहा जा सकता है. की यह ईसा से 300 वर्ष पूर्व सिकंदरीया मे रह रहे थे उन्होंने टोलमी के राज्यकाल मे सिकंदरीया मे एक विधालय की स्थापना की और वही पर अपने ग्रंथो की रचना की.
- Gukesh Dommaraju: The Rise of the Youngest Chess World Champion
- Double iSmart Movie Review, Cast, Rating
- Nalin Prabhat sent to tackle terrorism in Jammu and Kashmir
- Ola Roadster Motorcycle Price, Specifications and Features
- Sona Dey’s Viral MMS Video Watch and Download
यूक्लिड की शिक्षा – about euclid in hindi
यूनानी भाषा मे यूक्लिड का नाम यूक्लिडस था. कहा जाता है की इनकी शिक्षा प्लेटो के अकादमी मे हुई. उन दिनों यह अकादमी गणित की शिक्षा के लिए बहुत ही प्रसिद्ध था. राजनैतिक उथल पुथल के कारण यह गणितज्ञ सिकंदरीया चला गया. सिकंदरीया का शासक एक बहुत ही विद्वान व्यक्ति था. जो कवियों, कलाकारों, और गणितज्ञ को बहुत आदर करता था.
उन्होंने ने सिकंदरीया मे एक संग्रहालय की स्थानपना की जो वक़्त के साथ एक ग्रन्थालय मे बदल गया. इस ग्रन्थालय मे लगभग सात लाख पुस्तके जमा हो गयी थी. समय की उलट पुलट ने इसे नष्ट कर दिया.
सिकंदरीया मे यूक्लिड के नाम का डंका चारो तरफ बजता था. यूनानी भाषा मे लिखें गए इनके द्वारा ग्रन्थ का नाम स्टोइकेइया था. बाद मे इसे अरबी मे अनुवाद किया गया. बारहवीं शताब्दी मे लिखें इस गग्रन्थ का लेटीन भाषा मे अनुवाद किया गया. और इसका नाम बदल कर element’s रख दिया गया.
यह ग्रन्थ 13 खंडो मे बता हुआ है. प्रथम पुस्तक मे बिंदु, रेखा, वृत्त और त्रिभुज आदि की परिभाषाये दी गयी है. था कुछ सिद्ध प्रमाण दिया गया है. दूसरी पुस्तक मे ज्यामिति बीजगणित द्वारा रेखागणित की बिभिन्न आकृतियों को बनाने के तरिके दिया गया है. तीसरी और चौथी पुस्तक वृत्त से सम्बंधित है. पांचवी और छठी पुस्तक मे अनुपात सिद्धात और उसके उपयोग को बताया गया है.
सातवीं, आठवीं और नवी पुस्तक मे अंकगणित सिद्धात प्रस्तुत किया गया है. ग्यारहवी, बारहवीं और तेरहवी पुस्तके ठोस ज्यामिति से सम्बंधित है. इन पुस्तको मे घन, पीरामिड, अष्टफलक, गोला आदि का विवरण प्रस्तुत किया गया है.
यूक्लिड की इन ग्रंथो मे pythagoras सहित अन्य कई गणितज्ञ की खोजो का समावेश किया गया है. साथ ही साथ अपने अनुसन्धान को भी शामिल किया गया है. साथ ही साथ इसमें यूक्लिड ( Euclid biography in Hindi ) अनेक गणितये तथ्य दिए गए है.
यूक्लिड और उनकी रचनाएं
यूक्लिड की इन ग्रंथो ने ज्यामिति के प्रचार एवं प्रसार मे पिछले 2300 वर्षो मे जो योगदान दिया है. उसका वर्णन कर पाना लगभग असंभव है इसके साथ ही इस ग्रन्थ ने आधुनिक युग मे अनेक नए मार्ग भी सुझाये है. Einstein जैसे महान वैज्ञानिक ने भी सापेक्षता के सिद्धांत के लिए, इसी ज्यामिति का सहारा लिया है. Einstein ने यूक्लिड की महान प्रतिभा के लिए बहुत कुछ लिखा है. उनके शब्दो मे यूक्लिड ऐसे वैज्ञानिक थे. जिन्होंने तर्कीक योजना को जन्म दिया.
यूक्लिड का योगदान केवल ज्यामिति मे ही नहीं optics, बिभाजन सिद्धांत आदि विषयो मे भी था. यूक्लिड जैसे महान गणितज्ञ विरले ही पैदा होते है. आने वाली सादिया भी इस महान गणितज्ञ के योगदान को भुला नहीं पायेगी.
यूक्लिड विभाजन प्रमेयिका (Euclid’s division lemma in hindi)
यूक्लिड विभाजन प्रमेयिका हमें बताती है कि अगर हमारे पास दो धनात्मक पूर्णांक a एवं b हैं तो ऐसी अद्वितीय पूर्ण संख्याएं भी संभव है जो a = bq + r, 0 <= r < b को सिद्ध करते हैं।
r – शेषफल एवं q – भागफल के लिए उपयोग किया जाता है।
कलन विधि (Euclid’s division algorithm) :
यह एक विधि है जिससे हम दी गयी दो पूर्णांक संख्याओं का महत्तम समापवर्तक(HCF) निकालते हैं। इस विधि का आधार यूक्लिड विभाजन प्रमेयिका को ही कहा जाता है।
जैसा कि हम जानते हैं की महत्तम समापवर्तक वह सबसे बड़ी संख्या है जिससे दी हुई संख्याओं को पूरा विभाजित कर सकते हैं। पूरा विभाजित करने से हमारा तात्पर्य है कि विभाजन के बाद शेषफल शून्य निकलता है।
आइये हम अब कलन विधि से किन्हीं दो धनात्मक संख्याओं c एवं d का महत्तम समापवर्तक निकालने की प्रक्रिया को समझते हैं:
मान लिया हमारे पास दो संख्याएं हैं c एवं d एवं c संख्या d संख्या से बड़ी है। तो हम सबसे पहले c को लेते हैं। हम यूक्लिड की विभाजन प्रमेयिका का प्रयोग करके हम अब ऐसे q एवं r को ढूँढेंगे ताकि c = dq + r हो एवं 0 <= r < d हो।
यादो r = 0 हो जाता है तो r संख्या c एवं d संख्याओं का महत्तम समापवर्तक है। यदि r अभी 0 नहीं हुआ है तो हम फिर से यूक्लिड की विभाजन प्रमेयिका का प्रयोग करेंगे।
हम यही क्रिया तब तक दोहराते रहेंगे जब तक कि हमें शेषफल 0 नहीं प्राप्त हो जाए। अगर हमें 0 प्राप्त हो जाता है तो जो भाजक हमारे पास आया है वाही उन संख्याओं का महत्तम समापवर्तक होगा।
उदाहरण:
आइये अब हम ऊपर दी गयी प्रक्रिया को कुछ उदाहरणों के साथ करके देखते हैं :
हम मान लेते हैं कि हमारे पास दो संख्याएं हैं 78 एवं 980 जिनका हमें महत्तम समापवर्तक निकालना है। तो हमें पहले बड़ी संख्या लेनी है एवं उसमे यूक्लिड की विभाजन प्रमेयिका का प्रयोग करना है। हम बड़ी संख्या को c मानते हैं एवं छोटी संख्या को d तो हमें यह कुछ इस प्रकार करना है :
c = dq + r
980 = 78 × 12 + 44
जैसा कि हम देख सकते हैं यहाँ c = 980 है, d = 78 है, q = 12 है एवं r = 44 है।
अब हम 78 को c मान लेते हैं एवं उसके साथ भी वाही करते हैं।
78 = 44 × 1 + 34
अब हम 44 को c मान लेते हैं एवं उस प्रक्रिया को दोहराते हैं।
44 = 34 × 1 + 10
जैसा कि हम देख सकते हैं की अभी तक हमें शून्य की प्राप्ति नहीं हुई है एवं जैसा की प्रक्रिया में बताया गया था की जब तक शून्य नहीं आ जाता हमें वह दोहरानी है। अतः हम यह फिर से दोहराएंगे।
34 = 10 × 3 + 4
10=4×2+2
4=2×2+0
अब जैसा कि आप ऊपर देख सकते हैं हमें 0 शेषफल की प्राप्ति हुई है तो अब हम इस प्रक्रिया को रोक देंगे। जो भाजक होगा वही इन संख्याओं का महत्तम समापवर्तक होगा। जैसा कि हम देख सकते हैं आखिरी बार प्रक्रिया में भाजक 2 था तो इन दोनों संख्याओं जो कि 980 एवं 78 हैं का महत्तम समापवर्तक भी 2 होगा।
तो friends ये article” यूक्लिड की जीवनी और योगदान – Euclid biography in Hindi ” पढ़ने के लिए आपका बहुत बहुत शुक्रिया. उम्मीद करता हुँ. कि इस article से आपको बहुत कुछ नया जानने को मिला होगा